No legal limit for bats?

  • A bat in the hand

    Timeline, 2010: People with a blood alcohol level of 0.3 percent are undeniably kneewalking, dangerously drunk. In fact, in all 50 states in the US, the cutoff for official intoxication while driving is 0.08, almost a quarter of that amount. But what has people staggering and driving deadly appears to have no effect whatsoever on some bat species.

Why, you may be wondering, would anyone ask this question about bats in the first place? Bats are not notorious alcoholics. But the bat species that dine on fruit or nectar frequently encounter food of the fermented sort, meaning that with every meal, they may also imbibe a martini or two worth of ethanol.

Batty sobriety testing

Recognizing this exposure, researchers hypothesized that the bats would suffer impairments similar to those that humans experience when they overindulge. To test this, they selected 106 bats representing six bat species in northern Belize. Some of the bats got a simple sugar-water treat, but the other bats drank up enough ethanol to produce a blood alcohol level of more than 0.3 percent. Then, the bats got the batty version of a field sobriety test.

Bats navigate by echolocation, bouncing sound waves off of nearby objects to identify their location. To determine if the alcohol affected the bats’ navigation skills and jammed the sonar, the researchers festooned a ceiling with dangling plastic chains. The test was to see if the animals could maneuver around the chains while under the influence of a great deal of alcohol. To their surprise, the scientists found that the drunk bats did just as well as the sober ones.

Some bats hold their drink better than others

Interestingly, the bats did show a human-like variation in their alcohol tolerance, with some bats showing higher levels of intoxication than others. But one question that arises from these results is, Why would bats have such an enormous alcohol tolerance?

As it turns out, not all of them do. These New World bats could, it seems, drink their Old World cousins under the table. Previous research with Old World bats from Egypt found that those animals weren’t so great at holding their drink. Thus, it seems that different bat species have different capacities for handling—and functioning under the influence of—alcohol.

One potential explanation the investigators offer for this difference is the availability of the food itself. In some areas, fruit is widely available at all times, meaning that the bats that live there are continually exposed to ethanol in their diet. Since they can’t exactly stop eating, there may have been some selection for those bats who could get drunk but still manage to fly their way home or to more food. In other bat-inhabited areas, however, the food sources vary, and these animals may not experience a daily exposure to intoxication-inducing foods.

Alcohol driving speciation?

This study may be one of the first to identify a potential role for alcohol in the speciation of a taxon. Bats as a group underwent a broad adaptive radiation, meaning that there was a burst of speciation as different bat species evolved in different niches. Factors driving this burst are thought to have included different types of fruit; for example, tough fruits require different bat dentition features compared to soft fruits. Now, it seems that alcohol availability may also have played a role in geographical variation of alcohol tolerance in bats. Bats with greater tolerance would have been able to exploit a readily available supply of alcohol-laden foods.

What’s next in drunk-animal research? The investigators who made this unexpected bat discovery have a new animal target—flying foxes, which aren’t really foxes at all but yet another species of bat that lives in West Africa. We’ll have to wait and see how these Old World bats compare to the New World varieties when it comes to holding their liquor.

Batty bigamy and worse

Normally, inbreeding isn’t such a good thing

The idea that three generations of related females might share the same mate is, frankly, abhorrent and strange to us humans, but among bats, this tactic may be a fairly common phenomenon.

Generally, animals avoid inbreeding with one another because doing so results in the development of “inbreeding depression” in a population. This depression refers to falling rates of reproduction and survival that result when relatives interbreed. An example of what happens with inbreeding can be found among the royal houses of Europe in previous centuries. The members of these families would often receive papal dispensations to ignore the rules about consanguinity—close relatedness—to be allowed to marry another royal personage. There just weren’t that many eligible royal folk wandering around Europe and inbreeding was the ultimate result.

Hidden disorders emerge

Because of this inbreeding, often with third or second cousins marrying through several generations, the royal families would manifest disorders that normally would remain hidden. Some of these disorders required the inheritance of two alleles, both carrying mutations, for them to manifest. If the royal families had not constantly been intermarrying, the two recessive alleles would have been much less likely to come together in a single person. As it was, many royal households had children who were sickly, who could not reproduce successfully, or who manifested mental illness or retardation. One particularly notable trait that arose through several families was the “Hapsburg jaw,” a severe underbite and jutting jawbone that traced its way through the European royal chessboard. One potentate had a jaw deformity so severe that he could not chew his food.

Horseshoe bats don’t care

But the greater horseshoe bat appears to be untroubled by such issues of consanguinity, at least in the sense that related females from several generations will mate with the same male. In the world of the horseshoe bat, it pays to be a male bat who attracts a female. If the male attracts the daughter, he has a good chance of also mating with the mother and the grandmother, too. And he may be set for his relatively long bat-life; greater horseshoe bats can live up to 30 years, and females will consistently select the same male for the annual bat mating ritual, which results in a single offspring per female each year.

In spite of this inbreeding and polygyny, in which several females mate with the same male, the females apparently are quite adept at avoiding mating with their own fathers. A female will only mate with her mother’s partner if her mother has switched partners and is no longer mating with the daughter’s father.

Beat that, Belgium

This complex mating web results in a bat family tree that is more confusing than that of all the royal houses of Europe combined. It is possible for a female bat and her maternal half-aunt to be half-sisters on their father’s side.

How did researchers unravel this remarkable complexity? They identified a colony of female bats—who spend most of the year living in single-sex groups—in an old mansion in Great Britain. DNA analysis showed that the several hundred females lived in about 20 groups of related females who shared mates. The females met up with the males, who lived in a permanent stag party condition in a nearby cave, only once a year. Researchers speculate that females use smell to avoid mating with their fathers.

What benefit this interbreeding?

Why risk interbreeding in the first place? Actually, many species exhibit tactics that lead to closer kinship among individuals. Researchers speculate that closer kinships result in better teamwork to protect the genetic investment. In the world of team-playing ants, for example, female siblings can be 75% related, rather than the 50% most sexually producing species share genetically with their siblings. Experts believe that this extra genetic relatedness enhances the teamwork atmosphere of an ant colony. In much the same way, the related groups of female bats work together to raise the young. Researchers believe that this horseshoe bat tactic may extend beyond the greater horseshoe to other bat species.

%d bloggers like this: