Beethoven died of lead poisoning–or did he?

Did lead kill Beethoven?

Timeline, 2005 and 2010: Literary folk have often noted the passion and emotion of Ludwig van Beethoven’s works. Lucy Honeychurch, the heroine of E.M. Forster’s A Room with a View, became “peevish” after playing Beethoven, and of course there’s the famous hooligan Alex from A Clockwork Orange, who was roused to stunning displays of violence after hearing “Ludwig van.” Given Beethoven’s own behavior, which was punctuated by violent rages, frequent sudden outbursts, and wandering the streets humming loudly, it’s not surprising that his music would communicate his passion.

A heavy metal influence?

A study in 2005 (news release here) yielded results that suggested that much of his anger, however, was attributable to the effects of heavy metal…specifically, lead. Beethoven became sick in his 20s (he also went deaf in his 20s), and suffered until his death at the age of 56 from a variety of illnesses, including chronic diarrhea and other stomach ailments. His death was lingering and painful, and some people thought that he had suffered from syphilis. Yet now many of his symptoms fit the classic description of slow lead poisoning. Among the effects of lead poisoning are irritability, aggressive behavior, headaches, and abdominal pain and cramping, all of which Beethoven experienced.

Doctor to businessmen to Sotheby’s to science

Some samples of the great composer’s hair and skull are available today for sophisticated testing for metals. A Viennese doctor apparently snagged a few fragments of his skull 142 years ago and the pieces eventually made their way through the family to a California businessman. The hairs were cut by a student soon after Beethoven died and ended up at a Sotheby’s auction. A few years ago, tests on the hairs suggested that Beethoven’s body harbored high levels of lead—hair accumulates and retains such toxins better than any other tissue—but because the testing method destroyed the hair, further tests were not completed.

Wobbling electrons solve the mystery?

Since that time, a powerful new X-ray technique has become available. The Department of Energy’s Argonne National Laboratory owns the X-ray. In the facility, subatomic particles fly through a tubular tunnel almost at the speed of light, emitting as they travel X-rays 100 times brighter than the sun’s surface. These X-rays can bounce off of the surface of even a tiny sample. As they bounce off of the sample, electrons wobble out of place, releasing energy in a pattern that is specific to the atom being bombarded.

Researchers were interested in Beethoven’s hair and skull pieces. The team that evaluated the samples actually works on developing bacteria that can take up heavy metals and render them relatively harmless; such organisms would be useful in environmental detoxification. They placed Beethoven’s hair in their high-powered X-ray. The electrons wobbled and the pattern indicated that Beethoven was simply full of lead. In fact, they reported that the poor man had about 60 parts per million of lead in his body, which is 100 times normal levels. It certainly was enough to make a person manifest the various symptoms that characterized most of Beethoven’s life.

The team also looked for a pattern that arsenic would emit, and they found none. This result seemed to exonerate Beethoven from having had syphilis, since arsenic would have been the treatment of choice for such an ailment.

Not so fast

At the time the study results were revealed, ideas about how did Beethoven built up so much lead abounded. Some suggested that  his body was less able than normal to rid itself of the heavy metal, through which he’d have been exposed by many channels. His stomach problems and temperament led him to consume much wine, and the vessels for drinking wine contained lead. In addition, his medicines probably were stored in lead-lined bottles or vials, and he may well have visited spas—for his health, ironically—at which he consumed or swam in mineral water containing lead. In one report, Beethoven’s poor doctor was identified as the likely culprit in his demise.

Fast-forward five years to 2010. A deeper analysis (news release here) of the bone fragments from Beethoven’s school indicated that his lead levels were not that spectacular. The bone is the reservoir for most of the lead the body takes up, and Beethoven’s bones simply didn’t have enough to have caused his various physical ailments. While the experts seemed to be in agreement that the results point away from lead, a new heavy metal mystery arose from the results. One skull fragment they tested had about 13 mcg of lead per gram of bone, nothing to write home about, while another sample turned up with 48 micrograms per gram, a much higher level. Nevertheless, we must look elsewhere for what killed one of the world’s greatest western composers. Ideas being tossed around include lupus and heart disease. What we do know is that he lived in terrible pain, both from his maladies and from the treatments designed to help, including pouring hot oil in his ears, according to one Beethoven scholar quoted in the New York Times.

Another wrongly accused suspect

Heavy metals have featured in other historical whodunits. For example, Napoleon reportedly died of stomach cancer during his exile on Elba, but one analysis showed that he actually died of slow arsenic poisoning, suggested to have been at the hand of his closest assistant. Then, much like Beethoven’s story, a later study showed that arsenic likely played no role in the great general’s death.

A drug for Fragile X syndrome?

Hopeful news but not peer-reviewed

A new report describes success in a very small trial with a new drug that targets behavioral signs of Fragile X syndrome. This syndrome, which affects about one in every five thousand children, mostly boys, usually involves some form of intellectual disability along with a suite of typical physical characteristics, including large jaws and ears and elongated faces. It is the most common known heritable cause of intellectual disability and has also been associated with autism.

Novartis has been working on an experimental drug targeting some of the behavioral manifestations of Fragile X and has just reported, via interview, positive results from a small trial. Because the results are not public and have not been peer reviewed, the nature of the improvements is unknown, as is the nature of the drug itself. All that is known is that a parameter in the treatment group improved in some, but not all, participants with Fragile X. Also, the drug targets reduction of the synaptic noise that people with Fragile X experience. This reduction in neural background noise, it is thought, may pave the way for more typical neurological development.

Why is the X fragile?

The X chromosome consists of many many genes. Some of these sequences may contain repeats of the same three nucleotides, or letters of the DNA alphabet. For example, a gene section might have 50 repeats of the sequence C-A-G. These trinucleotide repeats, as they are known, are associated with a few well-known disease states when they occur in larger numbers. At a certain low number of repeats, they may have no effect, but when the number of repeats increases, a phenomenon known as trinucleotide expansion, the result can be disease. Huntington’s disease is one well-known disorder associated with trinucleotide expansion, and the general rule is that the more repeats there are, the more severe and/or the earlier the onset of the disorder.

On the X chromosome, where these repeats achieve sufficient numbers to result in Fragile X syndrome, the X chromosome itself looks like it’s literally at a breaking point. This visual fragility is what gave the disorder its name when this chromosome characteristic was discovered in 1969. A parent who carries an X chromosome with relatively few repeats does not have Fragile X, but the gene is in a state known as a premutation. Thanks to various rearrangements and events during cell division, this premutation can expand even in a single generation to sufficient numbers of repeats to cause the disorder in an offspring.

Because the relevant gene is on the X chromosome, Fragile X is an X-linked disorder. It’s more prevalent among males than among females because males receive only one X chromosome. Without the second X chromosome backup that females have, males are stuck with whatever genes–and mutations–are present on the single X chromosome they receive.

What is the autism link?

Fragile X underlies a small percentage of diagnosed cases of autism, between 2 and 6%. Because of the usual genetic complexity underlying autism, Fragile X is also the most common known single-gene cause of autism.

These prematurely reported results have also yielded some speculation that a drug that is effective in reducing background noise and improving behaviors for people with Fragile X might do the same for autistic people, even if their autism isn’t related to Fragile X. With nothing in the way of peer-reviewed findings to consider and results available only via interview, such hopes remain in the purely speculative realm.

For your consideration

Males are born with a single X chromosome. Females have two. The X chromosome has hundreds of genes on it. How is it that women can walk around with a double dose of these genes, or conversely, men can be healthy with a half dose?

Trinucleotide expansion occurs when a trinucleotide repeat sequence expands in numbers of repeats, potentially evolving from a premutation to a full-blown disruption of a gene. What are some possible mechanisms by which this expansion might occur?

In the article related to this report, there is reference to “synaptic noise” and to the idea that a drug might reduce this noise and allow more space for typical development. What do you think “synaptic noise” is, physiologically, and how might a drug target this noise?

Platypus spur you? Grab a scorpion

The most painful egg-laying mammal: the platypus

The duckbill platypus is an impossible-looking, risible creature that we don’t typically associate with horrific pain. In fact, besides its odd looks, its greatest claim to fame is that it’s a mammal that lays eggs. But that’s just because you’re not paying close enough attention. On the hind legs of the male platypus are two spurs that inject a venom so painful, the recipient human writhes for weeks after the encounter. In spite of the fact that platypuses (platypi?) and humans don’t hang out together much, platypus venom contains a specific peptide–a short protein strand–that can directly bind to receptors on our nerve cells that then send signals of screeching pain to our brains. Ouch.

Hurting? Reach for a scorpion

If you’ve ever experienced platypus-level pain and taken pain killers for it, you know that they have…well…side effects. It’s because they affect more than the pain pathways of the body. The search for pharmaceuticals that target only the pain pathway–and, unlike platypus venom, inhibit it–forms a large part of the “rational design” approach to drug development. In other words, you rationally try to design things that target only the pathway of interest. In this case, researchers reached for the scorpion.

Their decision has precedent. In ancient Chinese medical practice, scorpion venom has been used as a pain reliever, or analgesic. But as developed as the culture was, the ancient Chinese didn’t have modern protein analysis techniques to identify the very proteins that bind only to the pain receptors and inhibit their activity. Now, a team from Israel is doing exactly that: teasing apart the various proteins in scorpion venom and testing their ability to bind pain receptors in human nerve cells.

The next step? Mimicry

With proteins in-hand, the next step will be to create a synthetic mimic that influences only the receptors of interest. It’s a brave new world out there, one where we wrestle proteins from scorpion venom and then make copycat molecules to ease our pain.

For your consideration

Why do you think the platypus makes proteins in its venom that human pain receptors can recognize if humans generally haven’t targeted platypuses (platypi?) as prey over its evolution?

In the human body, a receptor may be able to bind each of two closely related molecules–as a hormone receptor does with closely related hormones–but one of the molecules activates the receptor, while the other molecule inhibits it. Taking this as a starting point, why do you think some proteins in scorpion venom–which often causes intense pain–have the potential effect of alleviating pain?

%d bloggers like this: