This blog has moved!

Please come visit me at The Biology Files. Everything’s the same except the name. I just like the new name better.

Your mother *is* always with you

Mother and child, microchimeras

When you’re in utero, you’re protected from the outside world, connected to it only via the placenta, which is supposed to keep you and your mother separated. Separation is generally a good thing because you are foreign to your mother, and she is foreign to you. In spite of the generally good defenses, however, a little bit of you and a little bit of her cross the barrier. Scientists have recently found that when that happens, you often end up toting a bit of mom around for decades, maybe for life.

The presence of cells from someone else in another individual is called microchimerism. A chimera in mythology was a beast consisting of the parts of many animals, including lion, goat, and snake. In genetics, a chimera carries the genes of some other individual along with its own, perhaps even the genes of another species. In microchimerism, we carry a few cells from someone else around with us. Most women who have been pregnant have not only their own cells but some cells from their offspring, as well. I’m probably carrying around cells from each of my children.

Risks and benefits of sharing

Microchimerism can be useful but also carries risks. Researchers have identified maternal cells in the hearts of infants who died from infantile lupus and determined that the babies had died from heart block, partially from these maternal cells that had differentiated into excess heart muscle. On the other hand, in children with type 1 diabetes, maternal cells found in the pancreatic islets appear to be responding to damage and working to fix it.

The same good/bad outcomes exist for mothers who carry cells from their children. There has long been an association between past pregnancy and a reduced risk of breast cancer, but why has been unclear. Researchers studying microchimerism in women who had been pregnant found that those without breast cancer had fetal microchimerism at a rate three times that of women who with the cancer.

Microchimerism and autoimmunity

Autoimmune diseases develop when the body attacks itself, and several researchers have turned to microchimerism as one mechanism for this process. One fact that led them to investigate fetal microchimerism is the heavily female bias in autoimmune illness, suggesting a female-based event, like pregnancy. On the one hand, pregnancy appears to reduce the effects of rheumatoid arthritis, an autoimmune disorder affecting the joints and connective tissues. On the other hand, women who have been pregnant are more likely to develop an autoimmune disorder of the skin and organs called scleroderma (“hard skin”) that involves excess collagen deposition. There is also a suspected association between microchimerism and pre-eclampsia, a condition in pregnancy that can lead to dangerously high blood pressure and other complications that threaten the lives of mother and baby.

Human leukocyte antigen (HLA)

The autoimmune response may be based on a similarity between mother and child of HLA, immune-related proteins encoded on chromosome 6. This similarity may play a role in the immune imbalances that lead to autoimmune diseases; possibly because the HLAs of the mother and child are so similar, the body clicks out of balance with a possible HLA excess. If they were more different, the mother’s immune system might simply attack and destroy fetal HLAs, but with the strong similarity, fetal HLAs may be like an unexpected guest that behaves like one of the family.

Understanding the links between microchimerism and disease is the initial step in exploiting that knowledge for therapies or preventative approaches. Researchers have already used this information to predict the development of a complication in stem cell transplant called “graft-versus-host disease” (GVH). In stem cell transplants, female donors with previous pregnancies are more associated with development of GVH because they are microchimeric. Researchers have exploited this fact to try to predict whether or not there will be an early rejection of a transplant in kidney and pancreas organ transplants.

(Photo courtesy of Wikimedia Commons and photographer Ferdinand Reus).

Placoderms had the “fun kind” of sex

Dunkleosteus, a Devonian placoderm. Pencil drawing, digital coloring, Nobu Tamura, Obtained from Wikimedia Commons.

Timeline, 2008: From about 420 to 350 million years ago, the rulers of Earth’s seas were an unattractive-looking armored fish known today as the placoderms. This group, consisting of many species, were the bulldogs of the fish world, heavy-bodied with big ugly mouths full of protruding, potentially dangerous bony plates. Some of them were quite small, but a few species grew as large as 20 feet in length. They were the dominant vertebrate worldwide for about 70 million years.

Conventional scientific wisdom would say that these ancient fish reproduced the way modern representatives of ancient lineages do: external fertilization, the sperm fertilizing the egg with a little help from water. The wisdom was so conventional, in fact, that experts placed the rise of internal fertilization—delivery of the sperm into the female via an act of copulation—a good 200 million years after the placoderms swam the seas.

A catastrophe on the reef

In what is now Western Australia, something terrible happened about 380 million years ago in the shallow seas covering a coral reef: the oxygen that fed the reef suddenly plummeted, leaving the coral starved and unable to support the food web built around it. The outcome was a rapid, catastrophic loss of all of the species on the reef, including the placoderms. Thanks to stable plate tectonics and some good sediment coverage, these hapless animals remained preserved for the subsequent millions of years until a team of fossil hunters uncovered them. They now populate one of the most famous fossil finds in the world, the Gogo fossil sites, which are packed with perfect specimens of long-lost species.

The role of Sir David Attenborough, the world’s coolest naturalist

Among those perfect specimens—so perfect, in fact, that three-dimensional samples are available—is a species that now has the name Materpiscis attenboroughi. The name means “Attenborough’s mother fish” and requires a bit of explanation. Back in the late 1970s, Sir David Attenborough produced a wonderful nature and science series called Life on Earth. In the series, he highlighted the Gogo sites, and his interest led researchers to name the fish after him. But the first part of the name, the genus name Materpiscis, means “Mother fish.” Why? Because when this 10-inch fish died during that catastrophic reef loss, she died just before becoming a mother.

We know this because a couple of researchers working on her fossilized remains decided at the last minute to expose the fossil to one more round of acid treatment. They had pretty much decided to write her up as she was, which would have been plenty because of the preserved 3D perfection of her remains. But they agreed to that last treatment, which gently etches away layers of the fossil to reveal what lies beneath. They are glad they did, because what that last treatment exposed, inside of the adult fish, is a tiny, fossilized fish embryo, about a quarter of the size of its mother.

Eureka! Again, and again, and again

Anyone looking at that embryo, inside of that fish, might have had any number of “Eureka” thoughts in that moment. Eureka! It’s a fish embryo, 380 million years old! There aren’t that many of those lying around. But even more important, Eureka! It’s a fish embryo inside of the mother. That means that the egg was fertilized inside of the mother, where the embryo grew, nourished in her body, just as mammals do it. The embryo was even attached by a tiny, fossilized umbilical cord. A final Eureka! just might be that we can confirm the sex of this fish just based on the fact that she was pregnant when she died.

This just in: Sex is fun

The presence of an internally developing embryo in this placoderm sets the assumed evolutionary timing of internal fertilization back about 200 million years. No one would have guessed that these ancient, armored bulldog-like fish would represent the earliest-known internal fertilization. And the fact that fertilization was internal means that these animals must have copulated, the standard mechanism for getting sperm into the female to meet the egg. That recognition led one of the embryo’s discoverers to remark that this animal represents the earliest example a species engaging in “sex that was fun.”

Pitcher plant port-a-potty for the tree shrew

A pitcher plant (courtesy of Wikimedia Commons)

Timeline, 2009: As humans, we are a bit limited in our imaginations. For example, we’d probably never consider climbing onto the edge of a toilet seat and licking the sides while…um…employing the toilet for standard uses. Perhaps one reason—among many obvious choices—is that we’re not tree shrews living in the wilds of Borneo in Southeast Asia.

If you’re now envisioning tree-dwelling rodents enjoying the civilized development of having their own toilet, you’re not too far off. Borneo is home to a number of unusual relationships between species, but none may be stranger than the one that has developed between the tree shrew and the pitcher plant. The pitcher plant is carnivorous, and as its name implies, has a pitcher-shaped structure that it uses to trap its food.

The many uses of the pitcher plant

Normally, a pitcher plant growing on the ground is the perfect trap for hapless animals drawn to its minimal nectar output. For some species, they’re not a death trap but a place to brood offspring—one frog uses the pitcher plant to lay its eggs, where trapped, digested insects may provide some nourishment. The insects fall in because the funnel-shaped pitcher part of the plant has a slippery lip that acts as a deadly superslide for any insect that alights on it. Unable to gain a foothold, the animal slides helplessly into the plant’s interior, landing in a pool of digestive enzymes or bacteria that slowly break it down.

What does a pitcher plant do with digested insect? It does what any organism, plant or otherwise, does with its food—it extracts nutrients from it. One primary nutrient that plants (and everything else) require is nitrogen. This element is part of life’s important building blocks for DNA and RNA and the amino acids that make up proteins. Thus, to grow and reproduce, organisms must acquire nitrogen from somewhere. Some plants form a partnership with bacteria to get their nitrogen. Pitcher plants digest insects for it.

Unless no insects are available. While ground-growing pitcher plants in Borneo can subsist on available ants and other crawly critters, some pitcher plants grow on vines and trees, where ants are largely unavailable. In addition, mountainous environments are not known for harboring lots of ants, so the pitcher plant needed a new plan for getting its nutrients.

Nectar for nitrogen

The plan, it seems, was selection for making more nectar, reducing the slippery factor, and behaving like both a toilet and a food source for an abundant animal in the Borneo mountains, the mountain tree shrew. Using video cameras, researchers based at a Borneo field station captured one of the most unusual mutually beneficial relationships in nature: the tree shrew, while enjoying the abundant nectar uniquely produced by these aerial pitcher plants, also poops into the pitcher plant mid-meal. The plant, perfectly shaped for the tree shrew to park its rear just so while it eats, takes up the feces and extracts nitrogen from it. In fact, these pitcher plants may derive up to 100 percent of their nitrogen from the tree shrew poop.

Researchers think that this friendly relationship must have been in the making for a very long time. The pitcher plant opening is perfectly shaped and oriented so that the nectar collects just at the lip and the shrew must orient while eating so that the funnel-like pitcher collects any poop that emerges. The plant also has developed sturdier and thicker structures that can support the weight of a dining/excreting tree shrew, which isn’t much at less than half a pound, but quite a bit for a plant to support.

As odd as this adaptation may seem, it’s not unique. Ground-dwelling pitcher plants have formed similar mutually beneficial relationships with insect larvae that help themselves to some of the insect pickings that fall in. These larvae excrete any leftovers, and the plant harvests nutrients from these excretions. Interestingly, the tree shrew itself dines on insects, so the pitcher plant is still indirectly deriving its nitrogen from insects even when it uses tree shrew poop. It’s just getting it from the tail end of a rodent intermediary instead.

Sexual selection: Do females follow fads?

Is this male attired in the fashionable look of the season? Based on the reaction of the female in the background, perhaps not. Source: Wikimedia Commons

Timeline, 2008: Sexual selection is a mechanism of evolution that sometimes butts heads with natural selection. Under the tenets of natural selection, nature chooses based on characteristics that confer a competitive edge in a given environment. Under this construct, environment is “the decider.” But in sexual selection, either competition between the same sex or a choice made by the opposite sex determines the traits that persist. Sometimes, such traits aren’t so useful when it comes to the everyday ho-hum activities like foraging for food or avoiding predators, but they can be quite successful at catching the eye of an interested female.

Those female opinions have long been considered unchanging. In the widowbird, for example, having long, flowing black tailfeathers is a great way to attract the lady widow birds. But perhaps they don’t call them widowbirds for nothing: if those male tailfeathers get too long, the bird can’t escape easily from predators and ends up a meal instead of a mate. In these cases, natural selection pushes the tailfeather trait in one direction—shorter—while sexual selection urges it the other way—longer. The upshot is a middling area for tailfeathers length.

This kind of intersexual selection occurs throughout the animal kingdom. Probably the most well-recognized pair that engages in it is the peacock and peahen. Everyone has seen the multicolored baggage any peacock worth his plumage drags around behind him. A peacock will fan out those feathers in an impressive demonstration, strutting back and forth and waving its tail in the wind, showing off for all he’s worth. It’s a successful tactic as long as nothing is around that wants to eat him.

Frogs hoping for a mate find themselves elbow deep in the “paradox of the lek.” The lek is the breeding roundup for frogs, where they all assemble in a sort of amphibian prom. For the males, it’s a tough call, literally. They must call loudly enough to show the females how beautifully androgenized they are—androgens determine the power of their larynx—while at the same time not standing out enough to attract one of the many predators inevitably drawn to a gathering of hundreds of croaking frogs. Trapped in this paradox, the frog does his best, but natural selection and sexual selection again end up stabilizing the trait within expected grooves.

This status quo has become the expectation for many biologists who study sexual selection: natural selection may alter its choices with a shifting environment, but what’s hot to the females stays hot, environmental changes notwithstanding. But the biologists had never taken a close look at the lark bunting.

A male lark bunting has a few traits that may attract females: when it shakes off its drab winter plumage and takes on the glossy black of mating season, the male bird also sports white patches on its wings that flash through the sky and sings a song intended to draw in the ladies. But the ladies appear to be slaves to fashion, not consistently choosing large patches over small, or large bodies over lighter ones. Instead, female lark buntings change their choices with the seasons, selecting a large male one year, a dark-colored male with little in the way of patches the next, and a small-bodied male the next. Lark buntings select a new mate each year, and the choice appears to be linked to how well the male will aid in parenting duties, which both parents share. It may be that a big body is useful in a year of many predators, but a small body might work out better when food supplies are low.

The researchers who uncovered this secret of lark bunting female fickleness watched the birds for five years and based their findings on statistical correlations only. For this reason, they don’t know exactly what drives the females’ annually varying choices, but they speculate that environmental factors play a role. Thus, sexual selection steps away from the realm of the static and becomes more like—possibly almost indistinguishable from—natural selection.

%d bloggers like this: